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Abstract—This paper presents a minimum generation error 

(MGE) training method for hidden Markov model (HMM) based 

prediction of articulatory movements when both text and audio 

inputs are given. In this method, MGE criterion is adopted to 

replace the maximum likelihood (ML) criterion to estimate model 

parameters for the unified acoustic-articulatory HMMs. 

Different from the MGE training for HMM-based acoustic 

speech synthesis, the generation error used here is defined as the 

distance between the generated and natural articulatory features.   

Experimental results show that our proposed method can 

improve the accuracy of articulatory movement prediction 

significantly. The average root mean square (RMS) error reduces 

from 1.002 mm to 0.913 mm on the test set. 

Keywords-hidden Markov model; articulatory features; 

minimum generation error training 

I.  INTRODUCTION  

When humans speak, it is the movement of articulators, 

such as the tongue, jaw, lips and velum, that generates the 

acoustic signal. These movements of human articulators, i.e. 

articulatory features, can be recorded by human articulography, 

such as EMA [1], and they offer an effective description for 

speech production. Similar to traditional acoustic text-to-

speech (TTS) synthesis, the prediction of articulatory features 

from text also has many potential applications. For example, it 

could be integrated in an animated talking-head system; or it 

could help users of a language tutoring system to correct their 

pronunciation.  

Many methods have previously been proposed to predict 

or estimate articulatory movements, such as [2-4]. In [2], 

combined with time-aligned phone strings, articulator 

movements were predicted using Gaussian distribution models 

at phone midpoints together with an explicit coarticulation 

model. In [3], lip shapes (derived from video) were predicted 

alongside synchronous acoustic speech synthesis parameters 

from textual input using an HMM-based parameter generation 

method. The work described in [4] was based on a Gaussian 

mixture model for the joint distribution of acoustic and 

articulatory features to achieve the mapping from acoustic 

features to articulatory movements.   

In our previous work [5], we adopted a framework 

similar to HMM-based parametric speech synthesis to predict 

the movement of articulators from text. When text was the 

only input, HMMs were trained using the recorded articulatory 

features and labeling information. When acoustic features 

were input with the text, unified acoustic-articulatory HMMs 

were trained to capture the relationship between the acoustic 

and articulatory features. Then the optimal trajectories of 

articulatory movements were generated from the trained 

models using a maximum-likelihood criterion with dynamic 

feature constraints. In [5], maximum likelihood criterion was 

adopted in model training, which may lead to two issues 

similar to the HMM-based parametric speech synthesis [6]. 

The first issue is the inconsistency between the model training 

criterion and the application of articulatory movement 

prediction. Another one is the ignorance of constraints 

between static and dynamic features during model training.  

A minimum generation error (MGE) training method was 

proposed [6] to solve these two issues for HMM-based 

acoustic speech synthesis. In this paper, we introduce MGE 

criterion into the HMM-based prediction of articulatory 

movements when both text and audio inputs are available and 

the unified acoustic- articulatory HMMs are adopted. Here, we 

define the generation error as the distance between the 

predicted and natural articulatory parameters. By minimizing 

this generation error on the training database, model 

parameters of the unified HMMs are optimized. 

The rest of this paper is organized as follows. Section 2 

reviews our baseline system, i.e. the unified acoustic-

articulatory HMM-based system trained under ML criterion. In 

Section 3, the proposed MGE training method is described in 

detail. Finally, the experimental results and conclusion are 

shown in Section 4 and 5. 

II. BASELINE 

The framework of HMM-based articulatory movement 

prediction method using both text and audio inputs is shown in  

Fig. 1, which consists of a training and a prediction stage. 

A. Model Training 

In training process of the unified acoustic-articulatory HMMs-

based system [7], the parallel acoustic and articulatory 

observation sequences of the same length T  are used to train a 

statistical model λ  for the combined acoustic and articulatory 

features by maximizing the likelihood function of their joint 

distribution ( , | )P λX Y , where 1 2[ , ,..., ]T=X x x xT T T T  and 

1 2[ , ,..., ]T=Y y y yT T T T  denote the acoustic and articulatory 

observation sequence respectively, ( )⋅ T  is the matrix transpose. 

For each frame, the acoustic and articulatory feature vector 
3D

t ∈ Xx R and 3D
t ∈ Yy R  is similarly composed of static 

component t
D

Sx ∈ XR  and t
D

S ∈ Yy R , their velocity and 

acceleration components as 
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Figure 1.  Flowchart of the HMM-based articulatory movement prediction 

method when both text and audio inputs are given 

2[ , , ]
t t tt S S S= ∆ ∆x x x xT T T T                                       (1) 

2[ , , ]
t t tt S S S= ∆ ∆y y y yT T T T                           (2) 

where DX and DY are the dimensions of the static acoustic and 

articulatory features.  

Synchronous-state model structure [7] is adopted here, 

which assumes that the acoustic features and the articulatory 

features share the same state sequence for each sentence. The 

dependency between the acoustic and articulatory features is 

modeled by a piecewise linear transform within the HMM 

states [7], which is shown as follows: 
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( , ) ( | ) ( )j t t j t t j tb b b=x y x y y                             (4) 

( | ) ( ; , )
j jj t t t j tb = + X Xx y x A yN µ Σ                      (5) 

( ) ( ; , )
j jj t tb = Y Yy yN µ Σ  

where 1 2{ , ,..., }Tq q q=q  denotes the state sequence shared by 

two feature streams; jπ  and ija  represent initial state 

probability and state transit probability; ( )jb ⋅  means the state 

observation probability density function (PDF) for state j ; 

(; , )N µ Σ  represents a Gaussian distribution with a mean 

vector µ  and a covariance matrix Σ ; 3 3D D
j

×∈ X YA R  is the 

linear transform matrix for state j . The transform matrix is 

state-dependent, and so a globally piecewise linear transform 

can be achieved. An EM algorithm is employed to estimate the 

model parameters and the details can be found in [7].  

Similar to the standard procedure of model training for 

HMM-based acoustic speech synthesis, the fully context-

dependent HMMs of the unified acoustic-articulatory features 

is built at first. Then a decision tree is trained using the 

minimum description length (MDL) criterion [8] to cluster the 

PDFs of all HMM states to handle the data sparsity issue and 

to estimate parameters for the models whose context 

description is missing in the training set. 

B. Articulatory Movement Prediction 

At prediction stage, the results of front-end text analysis 

on the input sentence are used to determine the sentence 

HMM by consulting the clustering decision tree. Then, the 

maximum-likelihood parameter generation algorithm [5] is 

followed to predict the articulatory movements. Here, we 

assume that the acoustic features are input with the text. Thus, 

the optimal static articulatory features *
sY  are predicted as 

* arg max ( | , )

arg max ( , | , )

λ

λ
∀

=

=  

S

S S

s

s

s P

P

Y

Y
Y q

Y Y X

W Y q X
           (6) 

where SX and SY  denote the static acoustic and articulatory 

parameters respectively and SX  is given as input; X SX = W X , 

Y SY = W Y ; XW  and YW  are determined by the velocity and 

acceleration calculation functions. Eq. (6) is further simplified 

by considering only the optimal state sequence *q  as 

* *

,

( , ) arg max ( , | , )S S
qs

s P λ≈ Y
Y

Y q W Y q X             (7) 

where the optimal articulatory features *
sY  and the optimal 

state sequence *q  are estimated in an iterative way [5]. Each 

iteration consists two steps: 

1) Optimize articulatory features SY  given SX and q  

*
1arg max ( | , )Si Y S i S

s

P qλ −=
Y

Y W Y , X  (8) 

where i  denotes i -th iteration. For initialization, 0q  is 

calculated by Viterbi alignment using acoustic features 

X  and an isolated acoustic model. Eq.(8) can be solved 

by setting 1( | , ) / 0λ −∂ ∂ =Y S i S SP qW Y , X Y , and we have 

( )( )
( )

-1
* 1 1

1 1( )

Si

− −

− −

= +

⋅ + −

Y Y X Y

Y Y Y Y X X S X

Y W U A U A W

W U M W A U W X M

T T

T T T

        (9) 

where 
XM , 

YM , 
XU , 

YU  and A  are the model 

parameters of sentence HMM which is decided by the 

state sequence. 
XM  and 

YM  are mean vectors; 
XU  and 

YU  are covariance matrices; A  is the transform matrix. 

The detailed definition of these parameters can be found 

in [5]. 

2) Optimize state sequence q  given *
sY  and SX  

* *arg max ( | , , )i SP λ= Si
q

q q X Y                    (10) 

This can be solved by Viterbi algorithm using trained 

unified models on feature sequence pair *( , )Y SiW Y X . The 

updated *
iq is used in the first step of next iteration. 

III. MGE TRAINING FOR ARTICULATORY MOVEMENT 

PREDICTION 

Although the previous method can predict articulatory features 

with good accuracy [5], there are still issues existed in current 

framework, which would take negative impact on prediction 

of articulatory features. With the purpose of eliminating the 

inconsistency between training and generation, and 

considering the constraints between static and dynamic 

100



features, we introduce MGE training into this framework to 

optimize parameters of acoustic-articulatory model. 

MGE criterion is to optimize model λ  by minimizing 

defined generation error between generated and natural 

parameters on the training set. Here, the generation error is 

defined as distance between generated articulatory parameters 
*

SY  and natural articulatory parameters SY , and we have 

*arg min ( )SDλ = SY ,Y                           (11) 

* * 2

,,

1 1

( ) ( )
YDT

S t jt j

t j

D y y
= =

= −  SY ,Y                    (12) 

where T  is the length of the articulatory features sequence; 

,t jy  and ,t jy  are the j -th dimension of generated and natural 

static articulatory features at frame t .  

Similar to the original MGE training method [6], to 

minimize this generation error of articulatory features, a 

probabilistic descent (PD) algorithm is applied to update the 

model parameters. In the iterative model updating using 

probabilistic descent, we have 

*

( )
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*
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where τ  is the number of iteration and τε  is the updating 

step size for the τ -th iteration. When diagonal covariance 

matrices are used, the derivative of generation error with 

respect to model parameters can be derived from Eq.(9) as 
*

1 1

ij

ij

S
Y X X

X
µ

− −∂
= −

∂

Y
R W A U J

T T                                       (14) 
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where  
1 1( )Y Y X Y

− −+R = W U A U A WT T                                         (19) 

ij
µX  and 

Yij
µ  are the j -th dimension of mean vectors of state 

i  for acoustic and articulatory features respectively, 
ijXv  and 

Yij
v  are the corresponding variance parameters. 

ijk
a  is the 

linear transform coefficient for state i  to model the 

dependency for j -th dimension of acoustic features on k -th 

dimension of articulatory features. In the vector 3

ij ∈ D T

X
XJ R , 

elements for the j -th dimension of the frames belonging to 

state i  are set to be 1, others are set to be 0, which is the same 

as 
ijYJ . In the diagonal matrix 3 3×∈ D T D T

X ij
X XP R , diagonal 

elements for the j -th dimension of the frames belonging to 

state i  are set to be 1, others are set to be 0, which is the same 

as Y ijP . In 3 3×∈ D T D T

ijk
X YL R , for the frames belonging to state 

i , the ( , )j k  element is set to be 1, and others are set to be 0. 

The model parameters given by ML training are used as 

the initial parameters for the iterative updating. Because the 

MGE training is conducted on the training set, the state 

sequences used in parameter generation for model updating 

are obtained by Viterbi alignment using initial models on both 
acoustic and articulatory observations and they are fixed in the 

iterative updating. 

IV. EXPERIMENTS  

A. Experimental conditions 

A multi-channel articulatory database was used in our 

experiments. It was recorded using a Carstens AG500 electro-
magnetic articulograph and contained 1,263 phonetically 

balanced sentences read by a male British English speaker. 

We have used six EMA sensors, located at the tongue dorsum, 

tongue body, tongue tip, lower lip, upper lip, and lower incisor. 

Each receiver recorded spatial location in 3 dimensions at a 

sample rate of 200Hz: coordinates on the x- (left to right), y- 
(front to back) and z- (bottom to top) axes (relative to viewing 

the speaker’s face from the front). Because all six receivers 

were placed in the midsagittal plane of the speaker’s head, 

their movements in the x-axis were very small. Therefore, 

only the y- and z-coordinates of the 6 receivers were used in 
our experiments, making a total of 12 static articulatory 

features.  

Firstly, a unified model for acoustic and articulatory 

features was trained under ML criterion as a baseline system. 

The shared-clustering, state-synchronous and dependent-

feature system [7] of acoustic and articulatory HMMs was 
adopted in our experiment. 1,200 sentences were selected for 

training and the remaining 63 sentences were used for testing. 

40-order frequency-warped LSFs and an extra gain dimension 

were derived from the spectral envelop provided by 

STRAIGHT analysis, with a frame shift of 5ms. A 5-state, 

left-to-right HMM structure with no skips and diagonal 
covariance was adopted as the context-dependent phoneme 

models. Our implementation is based upon the HTS [9] 

toolkits. The transform matrix jA  was tied to 15 classes and 

was defined as a three-block matrix corresponding to static, 

velocity and acceleration components of the feature vector.  

In MGE training, 1000 sentences of original training set 

were used for training and other 200 sentences (randomly 

selected) were used as development set to control the number 
of iterative updating. Due to large computation complexity, 

the transform matrix jA  were not updated in this experiment. 

After each iteration of MGE training, we calculated average 
RMSE over all 12 articulatory dimensions between natural 
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and generated parameters on the development set, and select 

the final optimal iteration number if the reduction of the 

average RMSE was smaller than a threshold. 
When evaluating the performance of proposed method on 

the training set, development set and test set, we simplified the 

iterative method of articulatory movement prediction 

introduced in Section II.B and the optimal state sequences are 

obtained by Viterbi alignment using the ML-trained model on 

the combined natural acoustic-articulatory observations to 
avoid the impact of different state sequences for the baseline 

and proposed methods. 

B. Experimental results 

Fig. 2 shows the reduction of the average RMSE 

(corresponding to total generation error) during MGE training 

on training set and development set. We can see from this 
figure that, the generation error on training set was reduced 

steadily during MGE training. And from that on development 

set, we can conclude that the optimal iteration number is 4. 

Thus the optimized model after 4-th iteration of MGE training 

was used as final optimization result. 

Using the final optimized model, we evaluate 
performance of proposed method on test set by clustered 

decision tree and tied optimized model (proposed). The RMSE 

of proposed method on test set is shown in Fig.3, compared 

with result from the model before MGE training (Baseline) 

with same state sequence, and the RMSE on training set and 

development set was also shown as reference. We can see 

from this figure that proposed method is significant better than 

baseline with much smaller RMSE. The relative reduction of 

RMSE on test set is 8.8%. 

Training set
Development set

 
Figure 2.  Generation error of articulatory features during MGE training on 

training set and development set 

V. CONCLUSION 

In this paper, by considering existed issues in the 
framework of predicting articulatory features, which are the 

inconsistency between model training criterion and application 

of the prediction of articulatory movement, and the ignorance 

of constraints between static and dynamic parameters during 

model training, we defined generation error as distance of 

natural and generated articulatory features, then introduced 

MGE training to solve the issues and thus to optimize 

parameters of the unified acoustic-articulatory model. By 

experiments, we can conclude that MGE training can bring 
significant improvement for prediction of articulatory features 

with relative reduction of 8.8% on RMSE of test set. To 

update the transform matrices in the MGE training and to 

evaluate our proposed method for different model structures 

will be the task of our future work. 

 
Figure 3.  Final RMSE of articulatory movement prediction on training set, 

development set, and test set. 
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