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Abstract

In this work, we implement a deep belief network for the acoustic-articulatory
inversion mapping problem. We find that adding up to 3 hidden-layers improves
inversion accuracy. We also show that this improvement is due to the higher ex-
pressive capability of a deep model and not a consequence of adding more ad-
justable parameters. Additionally, we show unsupervised pretraining of the sys-
tem improves its performance in all cases, even for a 1 hidden-layer model. Our
implementation obtained an average root mean square error of 0.95 mm on the
MNGU0 test dataset, beating all previously published results.

1 Introduction

The acoustic-articulatory inversion mapping problem (or simply articulatory inversion) is that of try-
ing to infer the position of the vocal tract articulators from an acoustic speech signal. This nonlinear
regression problem is ill-posed: several articulator positions can generate the same sound.

Systems capable of approximating the position of the articulators from the acoustic signal are useful
in several domains: Speech recognition, where articulatory information can improve the perfor-
mance of the recognition systems [1]; speech synthesis, where it can be used to improve the quality
or to modify the characteristics of the synthesised voice [2]; character animation, where it can be
used to automate the facial animation of virtual characters in films and video-games [3].

Several mathematical techniques have been applied to the articulatory inversion problem [4, 5, 6].
The introduction of rich articulography datasets of precise quantitative articulatory position data
along with recordings of the acoustic data produced, has made it possible to use standard ma-
chine learning methodologies like artificial neural networks [7] or hidden Markov models [8].
Deep architectures have recently been used to obtain state-of-the-art accuracies in phone classifi-
cation [9, 10, 11, 12] (i.e. in classifying speech acoustic signals into phones). Motivated by their
success in phone recognition, we hypothesised a deep belief network would be able to obtain high
accuracy in articulatory inversion.

In this work we have implemented a deep belief network for articulatory inversion and evaluated its
performance using the MNGU0 [13] test dataset. We obtained a root mean squared error (RMSE) of
0.95 mm, a significant improvement with respect to the best previously published results of 0.99 mm
obtained by Richmond [14] using a trajectory mixture density network. This favourable result leads
us to conclude that deep architectures are a suitable approach to articulatory inversion. Furthermore,
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given that our implementation uses a very simple dynamical model, we hypothesise an even higher
degree of accuracy could be achieved using a more elaborate trajectory model.

2 Restricted Boltzmann machines and deep belief networks

Restricted Boltzmann machines (RBMs) [15] are undirected graphical models formed by two layers
of probabilistic binary units: a visible layer v, and a hidden layer h. All units are fully connected to
the units in the other layer and no connections between units of the same layer are present.

Restricted Boltzmann machines are energy-based models. They capture dependencies between vari-
ables by assigning an energy value to each configuration, with more probable configurations having
a lower energy. The energy for a given configuration is defined to be:

E(v,h) = vTWh + bTv + cTh, (1)

where W is the matrix of connection weights, b is the vector of visible layer biases and c is the
vector of hidden layer biases.

The probability of a given configuration will be P (v,h) = 1
Z e
−E(v,h), where Z =

∑
v,h e

−E(v,h).

Because no connections exist between units of the same layer, the probability of the units in each
layer factorise given the state of the other layer, and have the expression:

P (vj = 1 | h) = σ(−bj −Wj·h) (2)

P (hj = 1 | v) = σ(−cj −WT
·j v), (3)

where σ is the logistic sigmoid function σ(x) = 1
(1+e−x) .

Training an energy based model to capture a probability distribution is done by reducing the en-
ergy of configurations present in the training data and increasing the energy of other configurations
dictated by the model probability. Maximum likelihood learning in an RBM can be done using the
following expressions [15]:

∆Wij = 〈vihj〉0 − 〈vihj〉∞ (4)

∆bi = 〈vi〉0 − 〈vi〉∞ (5)

∆ci = 〈h1
i 〉0 − 〈h1

i 〉∞, (6)

where〈·〉0 denotes the average when the visible units are clamped to the input values and the hidden
units are sampled from their conditional distribution (Equation 3), and 〈·〉∞ denotes the average
after assigning the input data to the visible units and running Gibbs sampling until the stationary
distribution is reached.

Unfortunately, maximum likelihood learning is too slow to be applied in a practical setting. An
approximation often used is contrastive divergence (CD) learning [15, 16] which uses the following
update rules for the weights and biases:

∆Wij ∝ 〈vihj〉0 − 〈vihj〉n (7)

∆bi ∝ 〈vi〉0 − 〈vi〉n (8)

∆ci ∝ 〈h1
i 〉0 − 〈h1

i 〉n, (9)

where 〈·〉n denotes the average after assigning the input data to the visible units and performing just
n updates (as in Gibbs sampling) to each layer. Whereas in Gibbs sampling the number of updates
required to reach the stationary distribution can be very high, in contrastive divergence learning a
very low number of updates is used, usually just 1. Contrastive divergence has been empirically
shown to work reasonably well [17] in most cases. However, other alternatives exist like persistent
contrastive divergence [18], or enhanced gradient descent [19].
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2.1 Gaussian-Bernoulli RBM

For problems with real valued input features, having binary visible units is not an appropriate rep-
resentation of the data. In these cases a Gaussian-Bernoulli RBM [20] can be used. In a Gaussian-
Bernoulli visible units follow a Gaussian activation probability and the hidden units are normal
binary units that follow a Bernoulli distribution.

The input data to Gaussian-Bernoulli RBMs is usually normalised over the training dataset to have
standard deviation 1 for each unit. In which case the energy of a given configuration is:

E(v,h) =
1

2
(v − b)T (v − b)− vTWh − cTh, (10)

and as in the standard RBM the conditional distribution of v given h factorises with expression:

P (vj | h) ∼ N
(
−bj −Wj·h, 1

)
(11)

P (hj = 1 | v) ∼ σ(−cj −WT
·j v). (12)

2.2 Deep belief networks

A deep belief network (DBN) [17] is a multi-layer generative probabilistic model, made up of
stochastic binary units organised in layers. The bottom layer is the visible layer v, while the rest of
the layers are hidden layers h1,h2, . . . ,hl.

In a DBN the top two layers (hl−1 and hl) are connected in an undirected manner and form an
RBM. The rest of layers are connected in a top-down directed fashion.

The joint probability of a DBN factorises as follows:

P (v,h1,h2, . . . ,hl) = P (v | h1)P (h1 | h2) . . . P (hl−2 | hl−1)P (hl−1,hl). (13)

The probability of activation of a unit in any layer below the top two is conditionally independent of
the rest of units given the state of the layer directly on top of it, and follows the expression:

P (hi
j | hi+1) = σ(−bi

j −W i
j·h

i+1). (14)

Therefore, generating samples from a DBN can be achieved by doing Gibbs sampling of the top two
layers. Then, doing ancestral sampling of the lower layers using equation (14) until we reach the
visible layer.

2.2.1 Training a deep belief network

The key to successfully training a DBN is to do it in a greedy, layer-wise manner [17]; adding layers
on top one at a time.

Initially, a DBN will consist of only 2 layers, the visible and the first hidden layer. These initial
two layers are connected in an undirected way and trained as an RBM. If a new layer is to be put
on top, the connections between the previous top two layers are transformed into directed top-down
connections, and a new layer is added on top, connected to the previous top layer in an undirected
fashion. These new top two layers are, again, trained as an RBM. To obtain the visible data of this
new RBM, we must get samples from the previous top layer by running the data examples through
the previous layers of the DBN using equation1:

P (hl
j | hl−1) = σ(−clj −W l−1

·j
T
hl−1). (15)

2.2.2 Adapting a deep belief network for regression

In order to use a DBN for regression two main possibilities exist [21]: (1) Using a DBN to model the
joint probability distribution of the input and outputs. Then clamping the input units and sampling

1For notational convenience we will denote v as h0 here.
Usually, the mean-field value is used and no sampling of the binary values is done [21].
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Figure 1: Left: Photograph of an EMA setup taken during an MNGU0 dataset recording session.
Right: Positioning of electromagnetic coils in the MNGU0 dataset. The articulators tracked are:
upper lip (UL), lower lip (LL), lower incisor (LI), tongue tip (T1), tongue blade (T2), and tongue
dorsum (T3).

from the output units. (2) Using a DBN to model the probability distribution of the inputs and using
the top hidden layer units as inputs features to a standard regression method.

The second method is most commonly used. The simplest option for a regression problem is to add
a linear regression layer on top, and use the DBN weights and biases as the initialization point for
the parameters of a multilayer neural network [21].

However, performance using the initial weights from a DBN, is usually not very good. To improve
its performance the model is fine-tuned by performing gradient descent; generally, by using the
backpropagation algorithm.

3 Electromagnetic midsagittal articulography dataset

Electromagnetic midsagittal articulography (EMA), a technique that uses electromagnetic trans-
ducer coils glued to the vocal-tract articulators to record precise measurements of their position [22],
is the most widely used articulography technique for the creation of parallel acoustic and articulator-
position recordings.

The MNGU0 EMA dataset used in this paper, consists of 1263 utterances recorded from a single
speaker in a single session. Parallel recordings of acoustic data and the position of 6 coils is avail-
able. Transducer coils were placed in the midsagittal plane at the upper lip, lower lip, lower incisors,
tongue tip, tongue blade and tongue dorsum (see Figure 1). Each EMA data frame is made up
of 12 coordinates, two (x and y position) for each articulator tracked, with a sampling frequency
of 200 Hz. The acoustic data consists of frames of 40 frequency warped line spectral frequencies
(LSFs) [23] and a gain value, the frame shift step is 5 ms in order to obtain acoustic features at the
same frequency as the EMA data.

In our experiments we will use a context window of 10 acoustic frames selecting only every other
frame. Therefore, each input window will span a period of 100 ms. As output, we will use the
EMA frame that corresponds to the time at the middle of the current acoustic window, i.e. between
acoustic frames 5 and 6.

The dataset is partitioned in three sets: a validation and a testing set comprising 63 utterances each,
and a training set consisting of the other 1137 utterances.
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4 Benchmarks

To measure the accuracy of our system we will use the root mean-squared error (RMSE), which is
the most widely used measure of an articulatory inversion system performance, and is defined as√

1
N

∑
i(ei − ti)2, where ei is the estimated tract variable and ti the actual tract variable at time i.

In order to judge the relevance of our results, we need to set some reference points with which we
can compare them using the test set of the MNGU0 dataset.

A linear model that uses as input a window of acoustic data and as output a frame of articulatory
data, obtains an average RMSE of 1.52 mm. A regular one-hidden-layer artificial neural network
with 300 units, obtained an average RMSE of about 1.13 mm.

To set some reference points for what would be state-of-the-art accuracies, Richmond’s trajectory
mixture density networks obtain, when using one Gaussian-mixture per articulatory channel, an
average RMSE of 1.03 mm. When using 1, 2 or 4 Gaussian-mixtures (the number is optimised for
each channel) the average RMSE is reduced to 0.99 mm [14].

5 A deep neural network for articulatory inversion

5.1 Pretraining

To create our articulatory inversion system, first we trained a deep belief network to model speech
acoustic data2. Given that acoustic data is real valued, we used a Gaussian-Bernoulli restricted
Boltzmann machine for the first layer of our DBN. To train it we used the contrastive divergence
with 1 sampling step (CD1).

Figure 2 shows the receptive fields learnt by forty hidden units of the Gaussian-Bernoulli RBM. We
can observe some of them show blobs of high or low activation (light and dark regions respectively),
these blobs capture continuity patterns of the acoustic data in the time and frequency domains. Some
other units, display vertical patterns of high activation flanked by low activation (light vertical lines
flanked by dark vertical lines) and usually occupy the whole frequency (vertical) spectrum. These
features capture activation contrasts between contiguous acoustic frames.

We tried different sizes for the hidden layer of the Gaussian-Bernoulli RBM. We found that the final
average reconstruction error decreases as the number of hidden units is increased, but saturates at
300 units and does not improve by adding more hidden units after that.

More layers were trained on top by following the conventional procedure for DBNs: freezing the
weights of the layer just trained and using its hidden layer activation probabilities as input for the
new layer. In these higher layers both visible and hidden units take binary values and are therefore
Bernoulli-Bernoulli RBMs.

5.2 Adaptation for articulatory regression

In order to adapt the deep belief network trained to do regression of the articulator positions, we
transformed it into an artificial neural network, by using the DBN generative weights as the initial
weights of the ANN, and adding a linear regression layer on top with one output unit per articulatory
channel to infer.

To train this ANN, we first trained the top regression layer by using the pseudo-inverse method.
Then we performed backpropagation as in a regular artificial neural network to fine-tune the features
captured by the hidden layers and the top-layer linear regression weights.

5.3 Results

Using the procedure explained in the two previous sections, we trained a variety of DBNs with
different numbers of layers and units per layer using the training set from the MNGU0 dataset.

2To be more precise, speech acoustic data produced by the speaker in the MNGU0 dataset.
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Figure 2: Left: receptive fields of 40 units (in this experiment the hidden layer had a total of 300
hidden units) of a Gaussian-Bernoulli RBM trained as the first layer of our DBN. Each receptive
field is displayed by plotting the connection weight to each of the 410 visible units. Each column
in a field connects to each of the ten acoustic frames used an input. Each point in a column shows
an LSF coefficient (lower frequencies at the top) and the gain appears at the bottom. Top-right:
receptive fields of four hidden units that capture blob-like patterns. Bottom-right: receptive fields of
four hidden units that capture column-like patterns.

Their performance on the test set of the MNGU0 dataset using the root mean square error (RMSE)
criterion is shown in Figure 3 on the next page.

We can observe that the best results are obtained using 3 hidden layers and 300 units per hidden
layer, with an average RMS error of 1.026 mm.

Our results suggest that a deep architecture can obtain better results than a shallow 1-hidden layer
system. However, it could be argued that it is the use of a greater number of parameters and not
the hidden layers that matters. To test that possibility, we also plot the RMSE of each ANN versus
its number of tunable parameters. We can observe that a 3 hidden-layers architecture is superior
to shallower architectures even when using the same number or even fewer tunable parameters.
Therefore, we conclude a deep architecture works better than a shallow one to perform articulatory
inversion.

To check whether we could have achieved similar results without the DBN pretraining phase, we
trained a set of randomly initialised artificial neural networks. The results are shown in Figure 4.
We can observe that in all cases an ANN pretrained as a DBN obtains better results than a randomly
initialised ANN. However, in contrast to what is usually posited in the deep architecture literature,
we found no trouble in training 2 and 3 hidden-layer ANNs with randomly initialised weights.

5.4 Low-pass filtering

This simple deep architecture performs regression from one window of acoustic data to one frame
of articulatory output with no regard for the continuity or dynamical properties of the articulator
trajectories. Therefore, it is quite remarkable that it is able to beat a one-Gaussian-mixture trajectory
mixture density network, which takes into account the dynamic constraints of the articulatory data
by using delta and delta-delta output features to infer the most probable trajectory of the articulators
by using maximum-likelihood parameter generation [24].

In order to account for the dynamic nature of articulatory data in a simple manner, we can take
the approach followed by Richmond in his early work [7], where in order to eliminate the higher
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Figure 3: Left: RMSE performance of ANNs pretrained as DBNs on the MNGU0 test dataset as a
function of the number of units per layer. Four series are shown, using 1,2,3 and 4 hidden layers
respectively. For reference, the accuracies of a 1GM TMDN and 4GM TMDN are also shown.
Right: RMSE as a function of the number of tunable parameters. A 3 hidden layer DBN obtained
better results than 1 or 2 hidden layer DBNs even when using the same number or fewer tunable
parameters.
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Figure 4: Comparison of RMSE performance on the MNGU0 test dataset between ANNs pretrained
as DBNs, and ANNs initialised randomly. Six series are shown, using 1,2 or 3 hidden layers respec-
tively for each kind of ANN. For reference, the accuracies of a 1GM TMDN and 4GM TMDN are
also shown. In all cases ANNs pretrained as DBNs beat randomly initialised ANNs.
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frequency components of his output, he applied a low-pass filter obtaining as a results trajectory
estimations with a lower root mean square error.

Using the same approach as Richmond, we apply a zero-shift second order Butterworth low-pass
filter to our output. The movement of different articulators can have different dynamical charac-
teristics. Therefore, we calculated the RMSE on the MNGU0 training dataset using integer cut-off
frequencies in the range 1-20 Hz for each channel and chose the optimal for each of them.

The new results of our system after low-pass filtering surpass the best results of Richmond’s trajec-
tory mixture density networks, even using a much simpler dynamical model. The best results were
obtained, again, using a 3 hidden-layer architecture with 300 units per layer with a record average
RMS error of 0.954 mm on the test set of the MNGU0 dataset.

6 Conclusion and future work

In this work we have shown that a deep neural network is capable of obtaining accurate estimates of
articulatory trajectories from acoustic data. The best results were obtained using 3 hidden layers of
300 units each, with an RMSE of 0.95 mm on the test set of the MNGU0 dataset. A significant error
reduction compared to the previous best results published on the same dataset of 0.99 mm using
trajectory mixture density networks.

In our work, we show that adding hidden layers (up to three) to the architecture, improves the
accuracy. We also show, this is a result of a higher expressive capability of a deep architecture [25],
and not only a result of adding more parameters to the model.

We also show the advantage of doing unsupervised pretraining, where a deep belief network is
trained before being transformed into an artificial neural network. In all cases analysed, pretraining
had a positive effect on the results.

Even though low-pass filtering improved our results considerably, it would be desirable to implement
a more advanced trajectory method, as it is done in the most recent publications by Richmond [26]
or Renals [8]. Using the maximum likelihood parameter generation (MLPG) algorithm requires a
probability distribution of the position, velocity and acceleration of the articulators. However, our
present system is only capable of inferring point estimates of those features. We intend to adapt
our present system to act as a “deep” mixture density network. To do this we will have to modify
our system to output the mean, covariance matrix and mixing factors of a Gaussian mixture model.
These changes only affect the backpropagation phase of the training. Having a Gaussian mixture as
the output of our system will also allow us to explicitly tackle the non-uniqueness of the articulatory
inversion problem, leaving for the MLPG algorithm to decide the most likely trajectory through that
multimodal probability estimation.
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