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Abstract
This paper presents a statistical parametric speech synthe-
sis method using hidden trajectory model (HTM) for flexibly
controlling the formant positions and bandwidths of synthetic
speech. In an HTM, hidden formant trajectories are gener-
ated by a bidirectional filtering process on the time-aligned and
phone-dependent formant targets. The observed cepstral fea-
tures are constituted by a formant-related component, which is
predicted from the hidden formant trajectories using a nonlin-
ear and analytical function, and a residual component, which
is modeled by context-dependent Gaussians. In this paper, we
apply HTM-based acoustic modeling to speech synthesis. The
distribution parameters of the formant targets are manipulated at
synthesis time to control the characteristics of synthetic speech.
In our implementation, the distributions of residual cepstra are
estimated for each quinphone and the question set used in the
decision-tree-based model clustering is tailored so as to acquire
high controllability for vowels. Experimental results shows that
this proposed method can achieve effective controllability on
the formant positions and bandwidths while keeping almost the
same naturalness as the conventional HMM-based approach.
Index Terms: speech synthesis, hidden trajectory model, hid-
den Markove model, formant targets

1. Introduction
Hidden Markov model (HMM) based speech synthesis has be-
come a mainstream speech synthesis method in recent years [1].
In this method, spectrum, F0 and state duration are modeled
simultaneously in a unified framework of HMM. At synthe-
sis time, a sentence HMM is first constructed by concatenat-
ing the HMMs of context-dependent phones according to text
analysis results. Acoustic parameters are generated from the
sentence HMM using the maximum likelihood parameter gen-
eration (MLPG) algorithm [2], and then sent to a vocoder to
construct waveforms. This method is able to synthesize highly
intelligible and smooth speech sounds. However, its flexibility
to control the characteristics of synthetic speech is constrained
by the nature of the training data available [3].

A method of improving the controllability of HMM-based
speech synthesis by integrating articulatory features has been
proposed in [3, 4, 5], where the articulatory movements cap-
tured using electromagnetic articulography (EMA) were treated
as auxiliary features to decide the distribution of acoustic fea-
tures at each HMM state. This method achieved controllability
on synthetic speech by manipulating the articulatory features
according to phonetic knowledge at synthesis time. However,
recording EMA data needs precise and expensive equipments
and the speaker’s pronunciation is always influenced by the
sensors pasted in his mouth. Formant features, including the
central frequencies and the bandwidths of formants which can

be conveniently calculated from speech waveforms, also have a
straightforward relationship to the shape of vocal tract and the
movement of articulators. They have been used as intermedi-
ate representations to achieve flexible speech synthesis in [6],
where the joint distribution of the acoustic features and formant
features were modeled by multi-stream HMMs and the depen-
dency between these two kinds of features was described by a
piecewise linear transform. Although this formant-controlled
HMM-based speech synthesis method can manipulate the pre-
dicted formant features to control the pronunciation of vowels
effectively, it has several limitations. First, the piecewise linear
transform is inconsistent with the nonlinear transform relation-
ship between the formant features and the observed acoustic
features, such as cepstra and LSPs. Second, the formant fea-
tures are constrained to be generated from the HMMs at syn-
thesis time, which makes the integration of phonetic knowledge
into formant prediction somewhat inconvenient.

On the other hand, a multi-stage statistical generative model
named hidden trajectory model (HTM) has been proposed to
describe the speech dynamics and the hierarchical speech pro-
duction process for speech recognition application [7, 8, 9]. In
this model, vocal tract resonance (VTR, i.e. formant) trajecto-
ries which are generated by a bidirectional filtering process on
VTR targets are treated as hidden variables between phonolog-
ical descriptors and acoustic observations. The mapping from
VTRs to acoustic features is achieved by a nonlinear prediction
with context-dependent residuals. In this paper, we apply this
model structure to the formant-controlled speech synthesis so as
to solve the limitations of the existing approach [6] mentioned
above. First, the nonlinear and analytical mapping relationship
between formant features and cepstra is adopted, which is more
accuracy and robust than the piecewise linear transform used in
[6]. Second, the hidden formant trajectories are generated from
stochastic formant targets. The distributions of the formant tar-
gets are estimated for each monophone and the coarticulation
effects are described by the dynamic filtering process. There-
fore, the statistical model of formant features is much more
compact and easier for manipulation than the HMMs.

This paper is organized as follows. Section 2 briefly re-
views the model structure of HTM and describes the proposed
formant-controllable speech synthesis method using HTM. The
experimental results and the conclusions are given in Section 3
and 4 respectively.

2. Methods
2.1. Acoustic modeling using HTM with formant targets

An HTM is a structured generative model, in which the hidden
formant trajectories generated by target filtering are used as a
intermediate level between phonetic specifications and acoustic
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observations [7]. In an HTM, each phone is associated with
a set of formant targets, whose distribution is assumed to be a
Gaussian

p(t(k)|s(k)) = N (t(k);µTs(k) ,ΣTs(k)), (1)

where N (;µ,Σ) denotes a Gaussian distribution with mean
vector µ and covariance matrix Σ; s(k) is the monophone in-
dex at frame k; t(k) = [tf,1(k), tb,1(k), ..., tf,P (k), tb,P (k)]

>

is the vector of formant targets at frame k; (·)> means the ma-
trix transpose; P is the order of formants; tf,p(k) and tb,p(k)
denote the central frequency and bandwidth of the p-th formant
target respectively. Then, the distribution of the observed cep-
stra can be derived by two stages.

At the first stage, a low-pass finite impulse response (FIR)
filter is used to obtain formant features z(k) from the time-
aligned formant target sequence t(k) by convolution as

z(k) = h(k) ∗ t(k), (2)

where h(k) is the impulse response of the FIR filter; z(k) =
[f1(k), b1(k), ..., fP (k), bP (k)]

>; fp(k) and bp(k) denote the
central frequency and bandwidth of the p-th formant at frame k
respectively. h(k) can be simply defined as

h(k) =

 Cγ−k −D ≤ k ≤ 0,
C k = 0,
Cγk 0 ≤ k ≤ D,

(3)

where γ is the stiffness parameter specifying the degree of ar-
ticulation, which is positive and real-valued, ranging from zero
to one; D is the unidirectional length of the impulse response,
which represents the temporal extent of coarticulation; C is a
normalization constant, ensuring that h(k) sums to one over
all time frames. This filtering process describes coarticulation
effects because the generation of the current phone’s formant
trajectories is influenced by the adjacent phones’ targets. Con-
sidering the linearity between z(k) and t(k) as shown in (2),
the distribution of the formant features z(k) is a Gaussian

p(z(k)|s) = N (z(k);µz(k),Σz(k)), (4)

where s denotes the sequence of phone indices;

µz(k) =

k+D∑
τ=k−D

Cγ|k−τ |µTs(τ) , (5)

Σz(k) =

k+D∑
τ=k−D

C2γ2|k−τ |ΣTs(τ) . (6)

At the second stage, the formant features are mapped to
cepstra by

o(k) = F [z(k)] + r(k), (7)

where o(k) is the vector of cepstra at frame k; F is a nonlinear
function predicting cepstra from formant features; r(k) is the
residual of the prediction. The q-th order cepstrum predicted
from z(k) can be written analytically as

F [z(k)]q =
2

q

P∑
p=1

e
−πq bp(k)

fsamp cos(2πq
fp(k)

fsamp
), (8)

where fsamp is the sampling frequency. The distribution of the
residual cepstra r(k) is described using a context-dependent
Gaussian N (r(k);µrq(k) ,Σrq(k)), where q(k) denotes the

context description of the segment which frame k belongs to.
One choice for implementation is to use HMM states as the seg-
ments and use monophone labels as the context description [9].

When the phone sequences and context descriptions of an
utterance are known, the distribution of o(k) can be derived by
marginalizing the hidden formant features z(k) as

p(o(k)|s, q) =
∫
p(o(k)|z(k), q(k))p(z(k)|s)dz, (9)

where p(z(k)|s) is defined in (4-6); p(o(k)|z(k), q(k)) can
be derived from (7). In order to simplify the calculation of
p(o(k)|z(k), q(k)), an approximation using first-order Taylor
series is applied to the nonlinear prediction function

F [z(k)] ≈ F [z0(k)] + F ′[z0(k)](z(k)− z0(k)) (10)

where z0(k) is the expansion point of Taylor series. Finally, we
can get

p(o(k)|s, q) ≈ N{o(k);µo(k),Σo(k)} (11)

where

µo(k) = F [z0(k)] + F ′[z0(k)][µz(k) − z0(k)] + µrq(k),

(12)

Σo(k) = Σrq(k) + F
′[z0(k)]Σz(k)(F ′[z0(k)])>. (13)

The model parameters of an HTM are composed of
{µTs ,ΣTs} which describe the distribution of formant targets
for each phone and {µrq ,Σrq} which describe the distribution
of residual cepstra for each possible context description. Once
the phone and segment boundaries of training data are available,
these model parameter can be estimated under maximum like-
lihood criterion by gradient descent. The detailed formulae of
model estimation can be found in [7, 9].

2.2. HTM-based speech synthesis

The HTM-based acoustic modeling method presented above
has been applied to speech recognition successfully [8, 9]. In
this paper, we apply HTM to statistical parametric speech syn-
thesis. HTM simulates the hierarchical speech production pro-
cess and consists of a compact model for formant generation.
Therefore, it is suitable for formant-controlled speech synthe-
sis. Fig. 1 shows the flowchart of the proposed HTM-based
speech synthesis method, which consists of a training stage and
a synthesis stage. The details are as follows.

2.2.1. Model training

As shown in Fig. 1, context-dependent HMMs with decision-
tree-based model clustering are first trained in a way similar
to the conventional HMM-based speech synthesis. Component
phones, i.e. affricates and diphthongs, are decomposed into two
sub-phones before model training because each phone is as-
sumed to have static formant targets in an HTM as shown in
(1). The trained HMMs can provide discrete state boundaries
for HTM estimation and make F0 and duration prediction at
synthesis time.

In an HTM, the distributions of formant targets
{µTs ,ΣTs} are specified by monophone labels and the
distributions of residual cepstra {µrq ,Σrq} are context-
dependent. In our implementation, HMM states are used as the
segments and quinphone descriptions are used as the context
features for modeling residual cepstra. Because the possible
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Figure 1: The flowchart of HTM-based speech synthesis
method.

quinphone combinations are so many, a decision-tree-based
model clustering technique [10] is applied to {µrq ,Σrq}
so as to solve the data-sparsity problem. Furthermore, the
vowel related questions are removed from the question set for
decision tree construction in order to achieve better formant
controllability over vowels and to avoid the potential conflict
between the manipulated formant features and the context
features at synthesis time [11].

During HTM training, the formant target distribu-
tions {µTs ,ΣTs} and the residual cepstrum distributions
{µrq ,Σrq} are updated iteratively to maximize the likelihood
of the acoustic observations. Thus initial parameters are nec-
essary in this iterative updating. The formant features of the
training database are first extracted using Snack Sound Toolkit
[12]. The means and variances of the extracted formant features
are calculated for each monophone to initialize {µTs ,ΣTs}.
Then, the formant features recovered from the initial µTs by
FIR filtering are mapped to cepstra using (8). These cepstra are
subtracted from the observations to get initial residual cepstra.
Given discrete-state boundaries and the initial residual cepestra,
context-dependent Gaussians are estimated and clustered using
the tailored question set to initialize {µrq ,Σrq}. As mentioned
in (10), an approximation using first-order Taylor series is ap-
plied to simply the calculation of the acoustic likelihood. The
expansion point is set at z0(k) = µz(k) in our implementa-
tion. Because the mean vectors of the formant target distribu-
tions are the most important parameters in formant-controlled
speech synthesis, they are first updated while keeping the other
model parameters constant after the initialization. Then the
variances of formant targets and the residual cepstrum distri-
butions are updated in turn within one iteration. The iterative
updating stops when the increase of likelihood on training data
becomes insignificant.

2.2.2. Parameter generation and formant control

To perform synthesis, the result of text analysis is first used to
determine the discrete-state boundaries and predict the F0 fea-
tures from the standard HMM-based system. Then the distri-
bution of cepstra at each frame can be derived from the esti-
mated HTM using (11). In our implementation, cepstral fea-
tures are composed of static, velocity and acceleration compo-
nents. Therefore, MLPG algorithm considering the constraints
of dynamic features is applied to generate the cepstral sequence

Table 1: Cepstral distortions(dB) of cepstral prediction on the
test set for HMM-S and HTM-S .

frames HMM-S HTM-S
vowels+consonants 37921 2.9865 3.0415

vowels 16146 2.9199 3.1138
consonants 21775 3.0349 2.9867

[2]. Then the generated F0s and cepstra are sent to a vocoder
to reconstruct waveforms [13]. Because the formant targets are
low-dimensional and phonetically meaningful, it is convenient
to manipulate their distribution parameters according to pho-
netic knowledge. In the experiments of this paper, only the
mean vectors of the formant target distributions are manipu-
lated. Such manipulation can be reflected in the distribution
of acoustic features effectively according to (9) and can finally
affect the formant characteristics of the synthetic speech. It
is more straightforward than the approach proposed in [6], in
which to predict explicit formant features from HMMs is neces-
sary and to manipulate the formant sequences directly is tricky.

3. Experiments
3.1. Experimental conditions

A male British English speech database was used in our ex-
periments [14], including 1,199 sentences for training and 63
sentences for test. The waveforms were in 16kHz PCM format
with 16-bit precision. The acoustic features used for standard
HMM-based system training included F0 and spectral param-
eters, which were 23-order cepstras and an extra gain dimen-
sion derived by STRAIGHT analysis [13]. A total of 62 mono-
phones were used in our system. The formant features were
extracted by the Snack Sound Toolkit with the frame length of
5ms which matched the acoustic features. The formant features
consisted of the first three central frequencies and correspond-
ing bandwidths considering that they can characterize vowels
well [15]. Then, a conventional HMM-based speech synthesis
system and an HTM-based speech synthesis system using the
methods described in Section 2.2 were constructed. They are
denoted as HMM-S and HTM-S respectively.

3.2. Naturalness evaluation

Our proposed method aims at improving the flexibility of con-
ventional HMM-based speech synthesis without degrading nat-
uralness. First, the cepstral distortion of the cepstra generated
by the two systems were calculated. The results on the test set
are compared in Table 1. HMM-S and HTM-S achieve sim-
ilar overall cepstral distortions. For consonants, the cepstral
distortion of HTM-S is smaller than that of HMM-S. This is
because the vowel related questions were removed from the
question set used to cluster the distributions of residual cesp-
tra in HTM-S and there are more consonant related distribu-
tions in HTM-S than that in HMM-S. Furthermore, a subjec-
tive listening test was conducted to compare the naturalness of
speech synthesized by HTM-S and HMM-S. Ten Chinese stu-
dents well educated in English were asked to take part in a pref-
erence test which contained twenty pairs of sentences synthe-
sized by these two systems using parameter generation consid-
ering global variance [16]. Fig. 2 shows the average preference
scores. There is no significant preference between the natural-
ness of these two systems.

1531



Figure 2: Naturalness preference scores between HMM-S and
HTM-S.

Figure 3: Cepstral distortions for different systems and different
types of phones in the vowel identity modification experiment,
where “vowels-ex-/E/” indicates all vowels excluding the vowel
/E/. HMM-S and HTM-S refer to the results without vowel re-
placement. HMM-S-VR and HTM-S-VR denotes the results af-
ter vowel replacement. HTM-S-VR-M indicates the results us-
ing HTM-S system with vowel replacement and formant position
manipulation.

3.3. Formant control on central frequencies

A vowel modification experiment similar to the one conducted
in [11] was carried out to evaluate the effectiveness of control-
ling formant central frequencies using our proposed method. In
this experiment, each test sentence was first subjected to stan-
dard front-end text analysis, then all vowels were replaced with
the vowel /E/. Obviously, the sentences synthesized by HMM-S
contained no vowels other than /E/. When synthesizing these
sentences using HTM-S, we modified the instances of vowel
/E/ to different target vowels by manipulating the dimensions of
µTs which corresponded to formant central frequencies of /E/
to those of target vowel for each instance. The resulting cep-
stra distortions after vowel replacement and formant position
modification for different types of phones are shown in Fig. 3.
The cepstral distortion of HMM-S for all phones increases from
2.99dB to 3.60dB after vowel replacement due to a significant
distortion increment for the vowels excluding /E/. For HTM-S,
the overall cepstral distortion is 3.04dB after vowel replacement
and formant modification, which is comparable with HMM-S
using correct vowel identifiers. These results show that our pro-
posed method can achieve effective control on vowel identity
by modifying the central frequency of formants.

3.4. Formant control on resonant bandwidths

From the nonlinear function denoted by (8), we can see that
the generation of cepstra are also influenced by formant band-

Figure 4: Naturalness preference scores between original
HTM-S, HTM-S with half formant bandwidths (HTM-S-half),
and HTM-S with double formant bandwidths (HTM-S-double).

widths. Bandwidths describe the sharpness of each formant
and consequently influence the quality of synthetic speech. An
experiment was conducted to multiply each dimension of es-
timated µTs which corresponds to formant bandwidths with a
factor of 0.5 or 2. Then, two groups of preference test were car-
ried out to compared the naturalness of speech synthesized after
bandwidth modification with the original ones to investigate the
effects of bandwidth modification. Twenty sentence pairs were
used for each preference test. Ten Chinese students were asked
to take part in this subjective evaluation. As shown in Fig. 4, the
naturalness of synthetic speech increases with half bandwidths
and decreases with double bandwidths. This is consistent with
the knowledge that increasing the sharpness of formants may
alleviate the over-smoothing effect caused by statistical para-
metric speech synthesis. Samples of the synthetic speech used
in the experiments can be found at http://home.ustc.edu.cn/ mq-
cai/Demos4Interspeech2014.htm.

4. Conclusions
This paper has proposed a novel framework that a hidden trajec-
tory model with the distributions for phone-dependent formant
targets is utilized for formant-controlled speech synthesis. The
experimental results presented in this paper have shown that the
proposed method can achieve similar performance with the con-
ventional HMM-based synthesis method in naturalness. The
vowel identity modification experiment and the formant band-
width modification experiment have demonstrated the effective-
ness of our proposed method in controlling the characteristic of
synthetic speech by modifying the distribution parameters of
the low-dimensional formant targets. The experimental results
shown in this paper are still preliminary. To conduct more sub-
jective evaluations and to apply this model to speaker adaptation
application will be the tasks of our future work.
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