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Abstract

This paper proposes a novel framework that enables us to ma-
nipulate and control formants in HMM-based speech synthesis.
In this framework, the dependency between formants and spec-
tral features is modelled by piecewise linear transforms; for-
mant parameters are effectively mapped by these to the means
of Gaussian distributions over the spectral synthesis parame-
ters. The spectral envelope features generated under the influ-
ence of formants in this way may then be passed to high-quality
vocoders to generate the speech waveform. This provides two
major advantages over conventional frameworks. First, we can
achieve spectral modification by changing formants only in
those parts where we want control, whereas the user must spec-
ify all formants manually in conventional formant synthesisers
(e.g. Klatt). Second, this can produce high-quality speech. Our
results show the proposed method can control vowels in the syn-
thesized speech by manipulating F1 and F2 without any degra-
dation in synthesis quality.
Index Terms: speech synthesis, hidden Markov model, for-
mant, controllability

1. Introduction
In recent years, hidden Markov model (HMM) based speech
synthesis has become a mainstream method, offering high flex-
ibility and naturalness [1]. This method consists of two stages:
in the training stage, models are trained using acoustic features,
such as spectrum, F0 and duration; in the synthesis stage, acous-
tic features are predicted by the maximum likelihood param-
eter generation algorithm, and then sent to a vocoder to con-
struct the waveform. In the statistical parametric speech syn-
thesis method, we can easily change speech characteristics us-
ing adaptation and interpolation of model parameters. As this
is an automatic, data-driven approach, it is also scalable to very
large amounts of data.

However, current systems do not enable structured prior
knowledge of speech production or perception to be incorpo-
rated in a straightforward way. There are two main reasons for
this. First, the acoustic features that are currently used are lim-
ited to those required to drive vocoders, such as spectral fea-
tures, whereas we may wish to introduce prior knowledge in a
more structured way, for example in terms of information about
the position and dynamics of speech articulators or formants.
Second, current approaches largely do not explicitly model the
relationships between different levels of acoustic representa-
tion. To introduce and utilise such structured prior knowledge
in speech synthesis, we need to statistically model not only how
speech sounds but how it is produced.

With this in mind, we have previously developed a two-
layer time-series statistical model and have applied it to the joint

modelling of spectral features and articulatory features, includ-
ing tongue movements captured using electromagnetic articu-
lography (EMA) [2]. Although the structural dependency be-
tween these sets of features is still approximated by a piecewise
linear regression (using a similar technique to speaker adap-
tation), this model provides significant benefits to statistical
speech synthesis: the synthetic speech generated from such a
statistical model can be controlled via articulation. More specif-
ically, the generation of acoustic features is not only decided by
the acoustic models corresponding to the contextual informa-
tion, but is also influenced by the concurrent articulatory fea-
tures. This provides the possibility to control the generation
of acoustic features by manipulating those articulatory features.
Note that the baseline articulatory parameters are automatically
generated in the usual way by optimising a likelihood function.
Thereafter, we achieve spectral modification by changing only
those parts where we want control. This is an important advan-
tage and should not be confused with conventional articulatory
synthesisers, in which the user must specify all articulatory pa-
rameters manually.

Training the system in [2] requires EMA data to be recorded
in parallel with acoustic data. Since recording EMA data is
time-consuming and requires special expertise, it would be
more convenient if we could control characteristics of synthe-
sised speech based on phonetic or speech production knowledge
without such specialist data acquisition. Therefore, we focus on
formants in this paper. Formants too are a meaningful repre-
sentation with which to characterise speech, especially with re-
spect to speech perception, and we can drawn upon significant
existing knowledge about them. Moreover, we can easily cal-
culate formants from the acoustic speech signal alone. There-
fore, in this paper we develop a formant-controllable HMM-
based speech synthesis system by simply substituting the artic-
ulatory layer of [2] with a formant layer, and then investigate
how well we can manipulate formants to modify vowels. We
hypothesize that all the advantages in controllability that con-
ventional formant synthesisers have (e.g. the Klatt model [3])
can be achieved, while at the same time still producing high-
quality speech, since the speech waveform can be generated
not from a formant synthesiser but from a high-quality vocoder.
This synthesiser could prove very useful in other fields, such
as speech perception and phonetics research, where the Klatt
model is currently the standard tool.

2. Method
In standard HMM-based speech synthesis, mel-cepstra or line
spectral pairs (LSPs) are adopted as spectral features. As res-
onances of the human vocal tract, formants can characterise
speech in a meaningful way. For example, F1 (Fj denotes
jth formant central frequency) is related to vowel openness,
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Figure 1: Mean formant frequencies and relative amplitudes for
33 male speakers, for English vowels in a /h-d/ context. This
figure was taken from [4].

and F2 corresponds to frontness, which are crucial charac-
teristics of vowels. Fig. 1, taken from [4], shows how mean
formant frequencies vary for different vowels. Some related
work on using formants in speech synthesis has previously been
described [5, 6]. The advantages of the method we propose
here are: 1) formants affect only statistical models trained on
the spectral envelop features (such as LSPs); and 2) speech is
hence generated not from formant synthesisers but from high-
quality vocoders (such as the STRAIGHT vocoder [7]) using
the spectral envelop features generated from the statistical mod-
els which are affected by formants.

LetX and Y be formant and spectral observations respec-
tively, with static and dynamic components, i.e. X = WXXs

and Y = WY Ys, where WX and WY are given in [8]. We
define the length of the observations as N , and the parameters
of our statistical model as λ. The model used is the same as [2]
and is shown in Fig. 2. The likelihood function of their joint
distribution is given by

P (X,Y |λ) =Σ∀q P (X,Y , q|λ)

=Σ∀q πq0

N∏
t=1

aqt−1qtbqt(xt,yt) (1)

where

bj(xj ,yj) = bj(yj |xj)bj(xj) (2)
bj(yj |xj) = N(yt|Ajxj + µyj ,Σyj ) (3)

bj(xj) = N(xt|µxj ,Σxj ). (4)

Here q denotes the state sequence shared by all features; πq0

and aqt−1qt represent initial state probability and state transi-
tion probability from state qt−1 to qt respectively; bj() denotes
state observation probability density function (pdf) for state j;
µ and Σ represent mean vector and covariance matrix; andAj

denotes the linear projection matrix of xj for state j. This state-
wise linear transform approximates the non-linear dependency
between two kinds of features. The expectation-maximization
(EM) algorithm can be used to estimate the model parameters λ
(µxj ,Σxj ,µyj ,Σyj andAj), for which details are given in [2].

The training procedures in [2] are as follows. Gaussian
parameters (µxj ,Σxj ,µyj ,Σyj ) are initialized by separately
learning two streams for spectrum and formant features with
a shared decision tree. The linear transforms are then estimated
as

Â = [

T∑
t=1

γj(t)(yt − µyj )xᵀ
t )] � [

T∑
t=1

γj(t)xtx
ᵀ
t )]−1 (5)

Figure 2: Modelling the dependency between formant (x) and
spectrum (y) features. q denotes state.
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Figure 3: Comparison of trajectories (first 5 dimensions) of
acoustic mean between µyj (dotted) andAjxj + µyj (solid).

where γj(t) is the occupancy probability of state j at time t. We
then re-estimate the Gaussian parameters based on the linear
transforms estimated and repeat this process until convergence
is reached.

However, this means the linear transforms are initialized as
zero matrices (i.e. no dependency) which seems inappropriate.
Even after several iterations, we have found the linear trans-
forms may be close to the zero matrices. Therefore, in order
to achieve better initialisation, here we use the following equa-
tion for the linear transforms and to start the estimation of the
Gaussian parameters:

Â = [

T∑
t=1

γj(t)(yt − µglobal
y )xᵀ

t )] � [

T∑
t=1

γj(t)xtx
ᵀ
t )]−1 (6)

where µglobal
y is the global mean of spectrum feature over train-

ing data. Fig. 3 shows the comparison of µyj andAjxj +µyj

in eq. (3) using the new initialisation, followed by a few iter-
ations. Here LSPs are adopted as spectral features. From this
figure we can see thatAjxj has a reasonable impact, especially
in vowel regions. And also, the effect of using state-level linear
transform to represent relations between LSPs and formants is
shown in Fig. 3.

To manipulate the formants and affect the acoustic features,
the maximum likelihood parameter generation algorithm given
by

(X∗
s ,Y

∗
s ) ≈ arg max

Xs,Ys

P (WXXs,WY Ys|λ, q∗) (7)
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is approximated as two steps:

X∗
s ≈ arg max

Xs

P (WXXs|µx,Σx, q
∗) (8)

Y ∗
s ≈ arg max

Ys

P (WY Ys|µy,Σy,A, f(X∗
s ), q∗). (9)

We generate formant trajectories in the sense of maximum like-
lihood first, and then we manipulate those formant trajectories.
Here f(∗) denotes a function for manipulating the formant fea-
tures. Finally, we generate spectral synthesis parameter trajec-
tories in the sense of the maximum likelihood using the given
manipulated formant trajectories.

3. Experiments
3.1. Experimental conditions

A male English speech database was used in our experiments,
including 1,200 sentences for training and 63 sentences for
test. These speech waveforms were recorded at 16kHz sample
rate. The conventional acoustic features used for model train-
ing included F0 and spectral parameters, which were 40-order
frequency-warped LSPs and an extra gain dimension derived
from the spectral envelope obtained by STRAIGHT [7] analy-
sis. The frame shift was set to 5ms. A 5-state left-to-right HMM
structure with no skips was adopted to train context-dependent
phone models, the minimum description length (MDL) criterion
was adopted for decision tree building and the MDL factor was
set to 1.0. As in [2], we have used the weighted RMSE of LSPs
as an objective error measure. In addition, we have conducted
subjective listening tests with 20 listeners. An acoustic-only
system was built as a baseline, denoted as Acou-only.

Formant features were extracted using the Snack Sound
Toolkit (http://www.speech.kth.se/snack/) with 5ms as frame
length, to match the acoustic frameshift. These features com-
prised centre frequencies and bandwidths. The algorithm for
formant extraction used in Snack applies dynamic programming
to select and optimize a formant trajectory from multiple can-
didates which are obtained by solving for the roots of the linear
predictor polynomial (poles of a synthesis filter). This means
that, though the concept of a formant is mainly related to vow-
els, the formant features extracted by Snack for consonants too
actually represent the roots of the linear predictor polynomial.
Therefore, features for both vowels and consonants compose
continuous formant trajectories. Currently, we only consider
manipulation of F1 and F2, and so only F1 and F2 have been
integrated into our system. F1 is frequently plotted against
F2−F1 [9]. By plotting mean frequencies of vowels, equal dis-
tances along either axis are observed to correspond more closely
to equal perceptual distance. Since both F1 and F2 are in the
frequency domain, we have further applied the logarithm trans-
form to them and adopted logF1 and log(F2 − F1) as the
static formant feature vector (i.e. Xs). 100 transforms were
adopted in our formant-controlled system, which is denoted as
Acou+Frm.

3.2. Comparison with acoustic-only system

Although our goal is control over formants in synthesized
speech, it is necessary also to compare the performance of the
Acou+Frm system to that of the Acou-only system in terms of
naturalness. In Acou-only, a total of 2,222 leaf nodes were split
in MDL-based clustering, and 2,420 leaf nodes for Acou+Frm.
This means integrating F1 and F2 does not introduce much
distinction, in contrast to what happens when articulatory fea-
tures are introduced [2]. This could be because the formant

Table 1: Comparison of RMSE of LSPs for Acou-only and
Acou+Frm

RMSE of LSP Training set Test set
Acou-only 0.595 0.606
Acou+Frm 0.593 0.607

47.8% 52.2% 

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Acou-only Acou+Frm

Figure 4: Preference score between Acou-only and Acou+Frm.

features have a close relationship to the spectral features, es-
pecially for LSPs. Table 1 shows RMSE of LSPs for the two
systems. These two systems achieved very similar performance
in terms of the objective measurement. Fig. 4 shows the pref-
erence score between two systems using 15 synthesized sen-
tence pairs. We can see that there is no significant difference
between the two. Since these two systems have similar num-
bers of leaf nodes, they should have similar performance. We
conclude that Acou+Frm has similar performance to the con-
ventional system (i.e. Acou-only) in terms of preference scores
and objective measures.

3.3. Evaluation of controllability

To evaluate controllability of Acou+Frm in a similar way to [2],
we have chosen three front vowels /ı/, /ε/ and /æ/ in English for
this experiment. As shown in Fig.1, the main difference among
these three vowels in terms of formants is the position of F1 and
the distance between F2 and F1. /ı/ has smallest F1 and largest
F2 − F1, and /æ/ has largest F1 and smallest F2 − F1, and
/ε/ has a mid position of F1 and middle distance of F2 − F1.
Five monosyllabic words (bet, hem, led, peck, and set) with
vowel /ε/ were selected and embedded into the carrier sentence
”Please say ... again.” According to the difference between /ı/ to
/ε/ and /ε/ to /æ/ in the F1-F2 space, we adopted manipulating
functions as shown in Table 2 to implement f(∗) in eq. (9):

Table 2: Formant manipulating functions f(∗)
label -3 -2 -1 0 +1 +2 +3

F1 (Hz) +150 +100 +50 0 -100 -200 -300
F2 (Hz) -300 -200 -100 0 +100 +200 +300

Each monosyllabic word was manipulated to create a total
of 7 degrees of modification. Twenty listeners were then asked
to listen to the synthesized sentences (35 sentences in total) and
write down the key word in the carrier sentence. Then, for each
manipulation degree, we calculated the percentage of how these
three vowels were perceived.

Fig. 5 shows perception of vowels before and after manip-
ulating formants in the proposed model1. It is very clear that /ε/
is changed to /ı/ or /æ/ if F1 and F2 are manipulated appropri-
ately, e.g. method +2, +3, -2 and -3. This shows it is possible

1Some samples can be found in http://home.ustc.
edu.cn/˜leiming/Demo_IS2011/Demo.html or http:
//homepages.inf.ed.ac.uk/jyamagis/Demo-html/
demo.html
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Figure 5: Vowel perception for each manipulation method.

Figure 6: Effect of manipulation method -2 and +2 on spectro-
gram of ”set”.

to control vowel pronunciation in the speech synthesized by our
system according to phonetic knowledge of formants. Fig. 6
shows the effect of manipulation degrees -2 and +2 on the spec-
trogram of /ε/ in ”set”. The effect on F2 − F1 is discernable:
it become smaller and larger in degrees -2 and +2 respectively.
After manipulation, the spectrogram of ”set” is close to that of
either ”sat” or ”sit”.

Finally, to verify the quality of the manipulated vowels, we
selected manipulation methods -2 and +2 (which are phoneti-
cally correct for the vowel differences) as new target vowels of
/æ/ and /ı/, to compare with the corresponding sentences gen-
erated by the Acou-only system. Each monosyllabic word was
manipulated to create 2 variants, and in total 10 sentence pairs
were used as part of the subjective listening test. Fig. 7 shows
the preference score between Acou-only and the manipulated
Acou+Frm system. Comparing this with Fig. 4, we can see that
there is no significant difference between the two.

4. Conclusion and Future work
This paper has proposed a novel framework that enables us to
manipulate and control formants in HMM-based speech synthe-
sis. The advantages of the proposed method are that 1) formants
affect only statistical models trained on spectral envelop fea-
tures (such as LSPs), and 2) speech is generated not by formant

53.30% 46.70% 

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Acou-only Acou+Frm

Figure 7: Preference score between Acou-only and manipu-
lated Acou+Frm.

synthesisers but by high-quality vocoders using the spectral en-
velope features generated from statistical models with the influ-
ence of formants. The first advantage allows us to control the
generation of acoustic features by manipulating a formant tra-
jectory. We can achieve spectral modification by changing only
those parts where we want control, whereas the user must spec-
ify all formants manually in conventional formant-based syn-
thesisers. The second advantage provides us with high-quality
speech. Taken together, this synthesiser will be very useful in
other fields, such as speech perception and phonetics research,
where the the Klatt model is currently the main tool. The ex-
perimental results have also shown the proposed method offers
control over vowels in synthesized speech via the manipulation
of F1 and F2, without any degradation of synthesis quality.

Integrating richer formant features, e.g. F3, F4, F5 and
their bandwidths, as well as an investigation into different num-
bers of linear transforms, will be the subject of future work.
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