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Abstract—This paper presents a target-filtering model to predict 
the movements of articulators for articulatory control of hidden 
Markov model (HMM) based speech synthesis. This model is a
bidirectional filtering process on the time-aligned articulation 
target sequence. The bidirectional filtering could achieve both 
anticipatory coarticulation and regressive coarticulation. As all 
the parameters of the model have definite physical meaning, we 
can control the generation of the articulatory features flexibly 
with the guidance of articulatory phonetics. And the articulatory 
features produced by the target-filtering model can be adopted 
for a multiple regression HMM (MRHMM)-based parametric 
speech synthesis system. So we can control the pronunciation of 
vowels by articulatory features instead of the set of context 
features. Experimental results show that we can control the 
pronunciation among /�/, /�/, /æ/ effectively just by modifying the 
articulation targets.

Keywords-articulatory features; target-filtering model; speech
synthesis; articulatory features

I. INTRODUCTION

During the production of human speech, the movements of 
articulators (e.g. tongue, jaw, lips) generate and shape the 
acoustic signal. A method to manipulate the pronunciation of 
vowels by articulatory control in HMM based parametric 
speech synthesis has been presented in [1]. In this method, 
articulatory features were adopted as auxiliary features to 
decide the distribution of acoustic features at each HMM state.
Here “articulatory features” refers to the continuous 
movements of a group of articulators, recorded by 
electromagnetic articulography (EMA). In our previous work, 
we focus on modeling the dependency between acoustic and 
articulatory features. However, a simple but effective model for 
the prediction of articulatory movements is also very important
for the articulatory control of HMM-based speech synthesis.
Such a model should be able to generate articulatory features
accurately as well as integrate articulatory phonetics easily, i.e. 
we can control the generation of articulatory features with the 
guidance of articulatory phonetics.  

There have been some related researches on predicting 
articulatory movements from text. In [2], articulatory
movements were predicted from time-aligned phone strings by 
explicit coarticulation model and Gaussian distribution models 
at phone midpoints. A kinematic triphone model and a 
minimum-acceleration model were used to predict the 
trajectories of articulatory for continuous speech in [3].
However, these two methods above use only simple statistics 

values as model parameters, and the accuracy of prediction is 
not satisfactory. Different from the idea that the movement of 
an articulator is predicted by the interpolation of a sequence of 
spatial target positions, Ling and Richmond proposed a method 
to predict the movements of articulators from text using HMM, 
which could readily take use of acoustic features and fine-
grained  linguistic features simultaneously [4]. The HMM-
based method could achieve an average root mean square 
(RMS) error of 1.034mm, but the HMM model is too complex 
to integrate the knowledge of articulatory phonetics and to 
control the prediction of articulatory features. 

This paper presents a modeling approach to predicting 
articulatory movements from text. This approach was first used 
by Deng and Yu for predicting formant trajectories. In [5], a 
quantitative model of coarticulation was presented that could 
generate formant dynamics in fluent speech using resonance 
targets in time-aligned phone strings. This model could predict 
actual formant trajectories for natural speech utterances. More 
important is that all the parameters have definite physical 
meaning and can be readily controlled by the guidance of 
articulatory phonetics. We make a similar assumption as Deng 
used for the generation of formants, each articulator has a 
specific articulation target during the generation of a phone 
together with a stiffness parameter specifying the degree of
articulation. The articulation target here means a vector of 
articulatory features. In the target-filtering model, the stiffness 
parameter is used to control the temporal filtering of the time-
aligned articulation targets. 

In the remainder of the paper, Section 2 describes the 
target-filtering model in detail. Section 3 presents the 
performance of our method and a series of pronunciation 
control experiments. At last we make our conclusions in 
Section 4. 

II. METHOD

A. Target-filtering model
The target-filtering model is a bidirectional filtering process 

on the time-aligned articulation target sequence. The model 
could achieve both anticipatory coarticulation and regressive 
coarticulation because when it generates the articulatory 
movements at each time taking not only the current phone’s
target but also the adjacent phones’ targets into account. The 
model is consisted of a finite impulse response (FIR) filter 
characterized by the following non-causal impulse function [5]: 
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where represents time frame, the frame length in our system 
is 5 msec. is the stiffness parameter specifying the degree
of articulation, which is positive and real-valued, ranging from 
zero to one. The subscript in indicates that the 
stiffness parameter is dependent on the segments state 
which varies over time. is the unidirectional length of the 
impulse response, which represents the temporal extent of 
coarticulation. In our implementation, we set the length for 
forward and backward direction to be equal for simplicity. 

B. Training articulation targets
Given the target-filtering model above, the articulation 

targets are the key component of the model. In this part, we 
present a method to train the articulation target vectors , 
which is phone dependent. Given the articulatory features 
recorded concurrently with the acoustic waveform, this paper 
presents a maximum likelihood training method [6]. We 
assume that articulatory features obey a Gaussian distribution, 
the mean vector is the articulatory trajectory generated from the 
target-filtering model and the covariance matrix is denoted by 

. Then we can write the objective function as:
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where is the natural articulatory recordings and is 
the articulatory trajectory produced by the target-filtering 
model. The detailed algorithms to optimize the target values of 
each phone by maximizing (2) can be found in [6]. This is an 
iterative training method, so we need an initiation of the target 
vectors. First, we choose the instances of each phone with 
duration over 100msec. Then we calculate the means of the 
articulatory features of these instances’ middle states to get the 
initial target vectors.

C. MRHMM-based parametric speech synthesis
A method of controlling the characteristics of synthetic 

speech using articulatory features and MRHMM was proposed 
in [1]. In MRHMM, an auxiliary articulatory feature sequence
is used to supplement the state sequence for determining the 
distribution of acoustic features. To train the MRHMM-based 
speech synthesis system, context-dependent HMMs are first 
trained and a decision-tree-based model clustering technique is
used to solve the data-sparsity problem. Then, the estimated 
parameters are used as the initial values in the MRHMM and a 
zero matrix is used as the initiation for the regression matrix
which is used to model the relationship between the 
articulatory and acoustic features. And these parameters are 
iteratively updated to maximum using EM algorithm.
Here, and are
the parallel acoustic and articulatory feature sequence of the
same length , denotes the matrix transpose. Next, a 
context-dependent state duration model is trained by state-
aligned acoustic features. At synthesis time, only the optimal 
HMM state sequence is considered. This optimal state 
sequence      is  determined  using  the 

Label Location Label Location

T1 Tongue dorsum J Jaw

T2 Tongue body LL Lower lip

T3 Tongue tip UL Upper lip

Figure 1. Placement of the six EMA sensors used in the database

Figure 2. RMS error of articularoty features predicted from text. The x-axis 
refers to the number of iterations in the articulation targets training.

trained duration distribution model. At synthesis time, the 
articulatory feature sequence is firstly predicted from text 
using the articulatory movement prediction method. Then, the 
optimal acoustic feature sequence is generated by 
maximizing [1].

III. EXPERIMENTS

A. Database
In our experiments, an articulatory database which contains 

1,263 phonetically balanced sentences read by a male British 
English speaker was used. A Carstens AG500 electromagnetic
articulography was used to record the articulatory movements 
and acoustic waveforms simultaneously [7]. The waveforms 
were in 16kHz PCM format with 16-bit precision. Six EMA
sensors were used in our experiments, e.g. tongue dorsum, 
tongue body, jaw, as shown in Fig. 1. Each sensor recorded 
spatial location in 3 dimensions at a 200Hz sample rate. All 
these six sensors were placed in the midsagittal plan of the 
speaker’s head, so the values in the x-axis (left to right) were
very small. Therefore, only the y-coordinate (front to back) and 
z-coordinate (bottom to top) of the six sensors were used in our 
experiments, making a total of 12 static articulatory features. 
1,200 sentences were selected for training, and the rest 63 
sentences were used as a test set.



Figure 3. Position of the estimated articulation targets for the tongue for the 
vowels /�/, /�/ and /æ/.

Figure 4. The tongue dorsum’s z-axis trajectories  for the sentence “Now we
will say bet again”. The three trajectories from top to bottom correspond to the 
use of the stiffness parameter values of and respectively.

B. Effects of the gradient descent estimation
The results of the gradient descent estimate are shown in 

Fig. 2, where we set for (1), so the filter has 
a reaction time of 75 msec, which corresponds to the measured 
delays between the onsets of muscle activity and articulatory 
motion [8]. Although the gradient descent method do not 
guarantee to find the global optimum, but it could get a good 
result with a fine trained initialization. And the tongue 
positions of the estimated articulation targets of /�/, /�/ and /æ/ 
were shown in Fig. 3. We can see that the tongue position of /�/ 
is between the ones of /�/ and /æ/, which matches the 
knowledge of articulation phonetics well. Such knowledge will 
be used in the experiments of vowel quality modification in 
Section III. E.

C. Effects of different stiffness parameter
As we presented in Section II, the stiffness parameter can 

reflect the degree of articulation. So we illustrate the effects of 
the target-filtering model’s stiffness parameter in Fig. 4. The 
articulation targets (trained with ) for the three 
sentences are the same, but the trajectories produced from the 
model are obviously different with different stiffness parameter 
values. The smaller the stiffness parameter value is, the sharper 
the articulatory trajectory is. So this model could be used to
simulate the two degrees of articulation: hyperarticulated
speech, which tends to maximize the speech clarity, and
hypoarticulated speech is produced with minimal efforts [9].

Figure 5. RMS error of articulatory features predicted from text and phone 
boundaries by HMM-based system and target-filtering model.

Figure 6. Average RMS error for diphthongs, other vowel, plosive and other 
consonant.

D. Prediction of articulatory trajectoris
In this experiment, the articulatory movements produced by

target-filtering model are compared with the articulatory 
movements predicted by a HMM-based system which used a
quinphone model [4]. Only text and phone boundaries are input 
to the models for the prediction.

The performance of the two systems is compared in Fig. 5, 
the HMM-based system achieves an average RMS error of 
0.1034 cm and an average correlation coefficient of 0.8324 
while the target-filtering system achieves an average RMS 
error of 0.1310 cm and an average correlation coefficient of 
0.7384. We note that the target-filtering system underperforms 
the HMM-based system, but the target-filtering system uses 
less context features and the computation cost is lower. And 
the precision of the target-filtering system is acceptable for the 
aim of controlling speech synthesis.

As presented in Section II, we trained phone dependent 
articulation targets with the assumption that the articulation 
targets keep constant during a phone. But there are some 
compound phones (diphthongs and plosive) in our phone list.
We calculated the average RMS error for diphthongs, other 
vowel, plosive and other consonant separately in Fig. 6. We 
can see that the compound phones have lager average RMS 
error than other phones. If we break up these compound phones
into their constituents, the target-filtering system could achieve 
a better performance. It will be a task of our future work.



Figure 7. Objective evaluation of LSF RMSE on /�/, /�/ and /æ/. The x-axis 
indicates how to modify the articulation target.

Figure 8. Vowel identity perception results for modifying the articularoty 
target of /�/.

E. Pronunciation control by modifying articulatory targets
An MRHMM-based parametric speech synthesis system 

with articulatory control was constructed following the method 
introduced in [1]. In this system, 100 context-dependent 
transform matrices were estimated to model the dependency 
between acoustic and articulatory features. Vowel-related 
questions were removed from the question set for decision-
tree-based model clustering to make the model appropriate for 
the vowel modification task of this experiment. We carried out 
a pronunciation controllable experiment on the English vowel 
/�/. Five monosyllabic words (“bet”, “hem”, “pek”, “ten”,
“ded”) were embedded within a carrier sentence “Now we’ll 
say ... again”. As none natural articulatory recording of these 
sentences exists, we use the target-filtering model and the 
articulation target of /�/ to produce articulatory features as 
standard ones. And we modified the articulation target of /�/ by 
step size of 0.2cm only in 3 dimensions (the z-axis of tongue 
dorsum, tongue body and tongue tip) to generate articulatory 
features of these five sentences. These produced articulatory 
features were adopted for the MRHMM-based speech synthesis 
system. So 55 sentences were generated in total. We use the 
RMSE of the generated LSF feature sequence compared with 
the standard ones for these sentences [10]. The result of 
objective evaluation is shown in Fig. 7. From this figure, we 
see that the RMSE between /�/ and /æ/ first decreases then
increases when we reduce the target of /�/. As the target of /�/ 
is 0.6 cm lower than the one of /�/, the RMSE between 
modified /�/ and /�/ gets a minimum at the iteration of “�+0.6”.
And the same trend can be observed in the RMSE between 
modified /�/ and /æ/. And we also carried out a vowel identity 

perception test to evaluate the effectiveness of the articulatory 
controllable speech synthesis by modifying articulation target. 
Six Chinese listeners were asked to listen to these sentences 
and to write down the key word in the carrier sentence they 
heard. And the results of the percentages for how the vowels 
were perceived are shown in Fig. 8, we see that the 
modification in articulation targets has an obvious effect on the 
synthesized speech although the listeners are not native English.
The perception percentage of /�/ increases with the 
modification of the articulation target value of /�/ toward the 
one of /�/. With the modification distance over 0.6cm, the LSF 
RMSE between modified /�/ and /�/ increases meanwhile the 
LSF RMSE between modified /�/ and original /�/ increases 
more. So the perception percentage keeps increasing when the 
modification distance is over 0.6cm.

IV. CONCLUSION

A target-filtering model has been presented for predicting 
articulatory moments.  Only the phone sequence and phone 
boundaries are input to the model for prediction. We tend to 
use this model to control the generation of the articulatory 
trajectories as the input of a MRHMM-based speech synthesis 
system, i.e. we can control the pronunciation by just modifying 
the articulation targets with the knowledge of articulatory 
phonetics. Both the objective evaluation and subjective 
evaluation experiments on modifying the English vowel /�/
have shown the effectiveness of this method.
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